Pell equations for polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Pell equations

Let R and S be positive integers with R < S. We shall call the simultaneous Diophantine equations x −Ry = 1, z − Sy = 1 simultaneous Pell equations in R and S. Each such pair has the trivial solution (1, 0, 1) but some pairs have nontrivial solutions too. For example, if R = 11 and S = 56, then (199, 60, 449) is a solution. Using theorems due to Baker, Davenport, and Waldschmidt, it is possible...

متن کامل

Solving constrained Pell equations

Consider the system of Diophantine equations x2 − ay2 = b, P (x, y) = z2, where P is a given integer polynomial. Historically, such systems have been analyzed by using Baker’s method to produce an upper bound on the integer solutions. We present a general elementary approach, based on an idea of Cohn and the theory of the Pell equation, that solves many such systems. We apply the approach to th...

متن کامل

Arithmetic Progressions on Pell Equations

IF Introduction sn IWWW fremner ‘I“ ™onsidered —rithmeti™ progressions on ellipti™ ™urvesF fremner ™onstru™ted ellipti™ ™urves with —rithmeti™ progressions of length UD iFeF r—tion—l points @X; Y A whose XE ™oordin—tes —re in —rithmeti™ progressionF sn — following p—per fremnerD ƒilverm—n —nd „z—n—kis ‘P“ showed th—t — su˜group of the ellipti™ ™urve E@QA with E X Y 2 a X@X 2 n 2 A of r—nk I doe...

متن کامل

Powers in Recurrence Sequences: Pell Equations

In this paper, we present a new technique for determining all perfect powers in so-called Pell sequences. To be precise, given a positive nonsquare integer D, we show how to (practically) solve Diophantine equations of the form x −Dy = 1 in integers x, y and n ≥ 2. Our method relies upon Frey curves and corresponding Galois representations and eschews lower bounds for linear forms in logarithms...

متن کامل

On the resolution of simultaneous Pell equations ∗

We descibe an alternative procedure for solving automatically simultaneous Pell equations with relatively small coefficients. The word “automatically” means to indicate that the algorithm can be implemented in Magma. Numerous famous examples are verified and a new theorem is proved by running simply the corresponding Magma procedure requires only the six coefficients of the system a1x 2 + b1y 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 1997

ISSN: 0019-3577

DOI: 10.1016/s0019-3577(97)81817-4